坐标系
D-H参数表
axis i |
\alpha_{i-1} |
a_{i-1} |
d_i |
\theta_i |
---|---|---|---|---|
1 | 0 | 0 | 0 | \theta_1 = 0 |
2 | -\frac{\pi}{2} |
0 | d_2=116.5 |
\theta_2 = -\frac{\pi}{2} |
3 | 0 | a_2=203.5 |
0 | \theta_3 = 0 |
4 | 0 | a_3=173 |
0 | \theta_4 = \frac{\pi}{2} |
5 | \frac{\pi}{2} |
0 | d_5 = 79.2 |
\theta_5 = 0 |
6 | -\frac{\pi}{2} |
0 | 0 | \theta_6 = 0 |
正运动学
_1^0T = \left[\begin{matrix}\cos{\left(\theta_{1} \right)} & - \sin{\left(\theta_{1} \right)} & 0 & 0\\\sin{\left(\theta_{1} \right)} & \cos{\left(\theta_{1} \right)} & 0 & 0\\0 & 0 & 1 & 0\\0 & 0 & 0 & 1\end{matrix}\right]
_2^1T = \left[\begin{matrix}\cos{\left(\theta_{2} \right)} & - \sin{\left(\theta_{2} \right)} & 0 & 0\\0 & 0 & 1 & d_{2}\\- \sin{\left(\theta_{2} \right)} & - \cos{\left(\theta_{2} \right)} & 0 & 0\\0 & 0 & 0 & 1\end{matrix}\right]
_3^2T = \left[\begin{matrix}\cos{\left(\theta_{3} \right)} & - \sin{\left(\theta_{3} \right)} & 0 & a_{2}\\\sin{\left(\theta_{3} \right)} & \cos{\left(\theta_{3} \right)} & 0 & 0\\0 & 0 & 1 & 0\\0 & 0 & 0 & 1\end{matrix}\right]
_4^3T = \left[\begin{matrix}\cos{\left(\theta_{4} \right)} & - \sin{\left(\theta_{4} \right)} & 0 & a_{3}\\\sin{\left(\theta_{4} \right)} & \cos{\left(\theta_{4} \right)} & 0 & 0\\0 & 0 & 1 & 0\\0 & 0 & 0 & 1\end{matrix}\right]
_5^4T = \left[\begin{matrix}\cos{\left(\theta_{5} \right)} & - \sin{\left(\theta_{5} \right)} & 0 & 0\\0 & 0 & -1 & - d_{5}\\\sin{\left(\theta_{5} \right)} & \cos{\left(\theta_{5} \right)} & 0 & 0\\0 & 0 & 0 & 1\end{matrix}\right]
_6^5T = \left[\begin{matrix}\cos{\left(\theta_{6} \right)} & - \sin{\left(\theta_{6} \right)} & 0 & 0\\0 & 0 & 1 & 0\\- \sin{\left(\theta_{6} \right)} & - \cos{\left(\theta_{6} \right)} & 0 & 0\\0 & 0 & 0 & 1\end{matrix}\right]
逆运动学
求\theta_1
已知目标齐次矩阵^0_6T
\left[\begin{matrix}r_{11} & r_{12} & r_{13} & p_{x}\\r_{21} & r_{22} & r_{23} & p_{y}\\r_{31} & r_{32} & r_{33} & p_{z}\\0 & 0 & 0 & 1\end{matrix}\right] = ^0_6T
两边各左乘_1^0T^{-1}
,即
_1^0T^{-1} \times \left[\begin{matrix}r_{11} & r_{12} & r_{13} & p_{x}\\r_{21} & r_{22} & r_{23} & p_{y}\\r_{31} & r_{32} & r_{33} & p_{z}\\0 & 0 & 0 & 1\end{matrix}\right] = _6^1T
计算得
\left[\begin{matrix}r_{11} \cos{\left(\theta_{1} \right)} + r_{21} \sin{\left(\theta_{1} \right)} & r_{12} \cos{\left(\theta_{1} \right)} + r_{22} \sin{\left(\theta_{1} \right)} & r_{13} \cos{\left(\theta_{1} \right)} + r_{23} \sin{\left(\theta_{1} \right)} & p_{x} \cos{\left(\theta_{1} \right)} + p_{y} \sin{\left(\theta_{1} \right)}\\- r_{11} \sin{\left(\theta_{1} \right)} + r_{21} \cos{\left(\theta_{1} \right)} & - r_{12} \sin{\left(\theta_{1} \right)} + r_{22} \cos{\left(\theta_{1} \right)} & - r_{13} \sin{\left(\theta_{1} \right)} + r_{23} \cos{\left(\theta_{1} \right)} & - p_{x} \sin{\left(\theta_{1} \right)} + p_{y} \cos{\left(\theta_{1} \right)}\\r_{31} & r_{32} & r_{33} & p_{z}\\0 & 0 & 0 & 1\end{matrix}\right] =
\left[\begin{matrix}- \sin{\left(\theta_{6} \right)} \sin{\left(\theta_{2} + \theta_{3} + \theta_{4} \right)} + \cos{\left(\theta_{5} \right)} \cos{\left(\theta_{6} \right)} \cos{\left(\theta_{2} + \theta_{3} + \theta_{4} \right)} & - \sin{\left(\theta_{6} \right)} \cos{\left(\theta_{5} \right)} \cos{\left(\theta_{2} + \theta_{3} + \theta_{4} \right)} - \sin{\left(\theta_{2} + \theta_{3} + \theta_{4} \right)} \cos{\left(\theta_{6} \right)} & - \sin{\left(\theta_{5} \right)} \cos{\left(\theta_{2} + \theta_{3} + \theta_{4} \right)} & a_{2} \cos{\left(\theta_{2} \right)} + a_{3} \cos{\left(\theta_{2} + \theta_{3} \right)} + d_{5} \sin{\left(\theta_{2} + \theta_{3} + \theta_{4} \right)}\\\sin{\left(\theta_{5} \right)} \cos{\left(\theta_{6} \right)} & - \sin{\left(\theta_{5} \right)} \sin{\left(\theta_{6} \right)} & \cos{\left(\theta_{5} \right)} & d_{2}\\- \sin{\left(\theta_{6} \right)} \cos{\left(\theta_{2} + \theta_{3} + \theta_{4} \right)} - \sin{\left(\theta_{2} + \theta_{3} + \theta_{4} \right)} \cos{\left(\theta_{5} \right)} \cos{\left(\theta_{6} \right)} & \sin{\left(\theta_{6} \right)} \sin{\left(\theta_{2} + \theta_{3} + \theta_{4} \right)} \cos{\left(\theta_{5} \right)} - \cos{\left(\theta_{6} \right)} \cos{\left(\theta_{2} + \theta_{3} + \theta_{4} \right)} & \sin{\left(\theta_{5} \right)} \sin{\left(\theta_{2} + \theta_{3} + \theta_{4} \right)} & - a_{2} \sin{\left(\theta_{2} \right)} - a_{3} \sin{\left(\theta_{2} + \theta_{3} \right)} + d_{5} \cos{\left(\theta_{2} + \theta_{3} + \theta_{4} \right)}\\0 & 0 & 0 & 1\end{matrix}\right]
注意到两边矩阵(2, 4)处元素,即
- p_{x} \sin{\left(\theta_{1} \right)} + p_{y} \cos{\left(\theta_{1} \right)} = d2
该等式中只有\theta_1
未知,故可解出\theta_1
对等式左边进行三角变换,即
- p_{x} \sin{\left(\theta_{1} \right)} + p_{y} \cos{\left(\theta_{1} \right)} = \rho \sin{(\phi - \theta_1)}
其中,\rho = \sqrt{p_x^2 + p_y^2}
,\phi = Atan2(p_y, p_x)
于是,有
\begin{aligned} \sin{(\phi - \theta_1)} &= \frac{d_2}{\rho} \\
cos(\phi - \theta_1) &= \pm \sqrt{1 - \dfrac{d_2^2}{\rho^2}} \end{aligned}
两式相除,则有
\phi - \theta_1 = Atan2 \left( \dfrac{d_2}{\rho}, \sqrt{1 - \dfrac{d_2^2}{\rho^2}} \right)
即可解出\theta_1
\theta_1 = Atan2(p_y, p_x) - Atan2(d_2, \pm \sqrt{p_x^2 + p_y^2 - d_2^2})
求\theta_5
上面已经求出\theta_1
了,注意到(1)处矩阵两边的元素(2, 3),即
- r_{13} \sin{\left(\theta_{1} \right)} + r_{23} \cos{\left(\theta_{1} \right)} = \cos{\left(\theta_{5} \right)}
可以解出\theta_5
,此时\theta_1
已知
\theta_5 = \pm \arccos \left( - r_{13} \sin{\left(\theta_{1} \right)} + r_{23} \cos{\left(\theta_{1} \right)} \right)
求\theta_6
上面已经求出\theta_1, \theta_5
了,注意到(1)处矩阵两边的元素(2, 1)和(2, 2),即
\begin{aligned}
-r_{11} \sin{\left(\theta_{1} \right)} + r_{21} \cos{\left(\theta_{1} \right)} &= \sin{\left(\theta_{5} \right)} \cos{\left(\theta_{6} \right)} \\
-r_{12} \sin{\left(\theta_{1} \right)} + r_{22} \cos{\left(\theta_{1} \right)} &= - \sin{\left(\theta_{5} \right)} \sin{\left(\theta_{6} \right)}
\end{aligned}
两式相除即可求得\theta_6
\theta_6 = Atan2 \left( \dfrac{-r_{12} \sin{\left(\theta_{1} \right)} + r_{22} \cos{\left(\theta_{1} \right)}}{-\sin(\theta_5)} , \dfrac{-r_{11} \sin{\left(\theta_{1} \right)} + r_{21} \cos{\left(\theta_{1} \right)}}{\sin(\theta_5)} \right)
求\theta_3
上面已经求出关节角\theta_1, \theta_5, \theta_6
了,剩下的2, 3, 4关节可以看成简单的平面三连杆机械臂
已知目标齐次矩阵^0_6T
\left[\begin{matrix}r_{11} & r_{12} & r_{13} & p_{x}\\r_{21} & r_{22} & r_{23} & p_{y}\\r_{31} & r_{32} & r_{33} & p_{z}\\0 & 0 & 0 & 1\end{matrix}\right] = ^0_6T
两边各左乘_1^0T^{-1}
,右乘_6^5T^{-1} {}_5^4T^{-1}
,即
_1^0T^{-1} \times \left[\begin{matrix}r_{11} & r_{12} & r_{13} & p_{x}\\r_{21} & r_{22} & r_{23} & p_{y}\\r_{31} & r_{32} & r_{33} & p_{z}\\0 & 0 & 0 & 1\end{matrix}\right] \times _6^5T^{-1} \times {}_5^4T^{-1} = _1^0T^{-1} \times _6^0T \times _6^5T^{-1} \times {}_5^4T^{-1} = _4^1T
计算后得
\left[\begin{matrix}- \left(r_{13} \cos{\left(\theta_{1} \right)} + r_{23} \sin{\left(\theta_{1} \right)}\right) \sin{\left(\theta_{5} \right)} + \left(\left(r_{11} \cos{\left(\theta_{1} \right)} + r_{21} \sin{\left(\theta_{1} \right)}\right) \cos{\left(\theta_{6} \right)} - \left(r_{12} \cos{\left(\theta_{1} \right)} + r_{22} \sin{\left(\theta_{1} \right)}\right) \sin{\left(\theta_{6} \right)}\right) \cos{\left(\theta_{5} \right)} & \left(r_{11} \cos{\left(\theta_{1} \right)} + r_{21} \sin{\left(\theta_{1} \right)}\right) \sin{\left(\theta_{6} \right)} + \left(r_{12} \cos{\left(\theta_{1} \right)} + r_{22} \sin{\left(\theta_{1} \right)}\right) \cos{\left(\theta_{6} \right)} & \left(r_{13} \cos{\left(\theta_{1} \right)} + r_{23} \sin{\left(\theta_{1} \right)}\right) \cos{\left(\theta_{5} \right)} + \left(\left(r_{11} \cos{\left(\theta_{1} \right)} + r_{21} \sin{\left(\theta_{1} \right)}\right) \cos{\left(\theta_{6} \right)} - \left(r_{12} \cos{\left(\theta_{1} \right)} + r_{22} \sin{\left(\theta_{1} \right)}\right) \sin{\left(\theta_{6} \right)}\right) \sin{\left(\theta_{5} \right)} & d_{5} \left(\left(r_{11} \cos{\left(\theta_{1} \right)} + r_{21} \sin{\left(\theta_{1} \right)}\right) \sin{\left(\theta_{6} \right)} + \left(r_{12} \cos{\left(\theta_{1} \right)} + r_{22} \sin{\left(\theta_{1} \right)}\right) \cos{\left(\theta_{6} \right)}\right) + p_{x} \cos{\left(\theta_{1} \right)} + p_{y} \sin{\left(\theta_{1} \right)}\\\left(r_{13} \sin{\left(\theta_{1} \right)} - r_{23} \cos{\left(\theta_{1} \right)}\right) \sin{\left(\theta_{5} \right)} - \left(\left(r_{11} \sin{\left(\theta_{1} \right)} - r_{21} \cos{\left(\theta_{1} \right)}\right) \cos{\left(\theta_{6} \right)} - \left(r_{12} \sin{\left(\theta_{1} \right)} - r_{22} \cos{\left(\theta_{1} \right)}\right) \sin{\left(\theta_{6} \right)}\right) \cos{\left(\theta_{5} \right)} & - \left(r_{11} \sin{\left(\theta_{1} \right)} - r_{21} \cos{\left(\theta_{1} \right)}\right) \sin{\left(\theta_{6} \right)} - \left(r_{12} \sin{\left(\theta_{1} \right)} - r_{22} \cos{\left(\theta_{1} \right)}\right) \cos{\left(\theta_{6} \right)} & - \left(r_{13} \sin{\left(\theta_{1} \right)} - r_{23} \cos{\left(\theta_{1} \right)}\right) \cos{\left(\theta_{5} \right)} - \left(\left(r_{11} \sin{\left(\theta_{1} \right)} - r_{21} \cos{\left(\theta_{1} \right)}\right) \cos{\left(\theta_{6} \right)} - \left(r_{12} \sin{\left(\theta_{1} \right)} - r_{22} \cos{\left(\theta_{1} \right)}\right) \sin{\left(\theta_{6} \right)}\right) \sin{\left(\theta_{5} \right)} & - d_{5} \left(\left(r_{11} \sin{\left(\theta_{1} \right)} - r_{21} \cos{\left(\theta_{1} \right)}\right) \sin{\left(\theta_{6} \right)} + \left(r_{12} \sin{\left(\theta_{1} \right)} - r_{22} \cos{\left(\theta_{1} \right)}\right) \cos{\left(\theta_{6} \right)}\right) - p_{x} \sin{\left(\theta_{1} \right)} + p_{y} \cos{\left(\theta_{1} \right)}\\- r_{33} \sin{\left(\theta_{5} \right)} + \left(r_{31} \cos{\left(\theta_{6} \right)} - r_{32} \sin{\left(\theta_{6} \right)}\right) \cos{\left(\theta_{5} \right)} & r_{31} \sin{\left(\theta_{6} \right)} + r_{32} \cos{\left(\theta_{6} \right)} & r_{33} \cos{\left(\theta_{5} \right)} + \left(r_{31} \cos{\left(\theta_{6} \right)} - r_{32} \sin{\left(\theta_{6} \right)}\right) \sin{\left(\theta_{5} \right)} & d_{5} \left(r_{31} \sin{\left(\theta_{6} \right)} + r_{32} \cos{\left(\theta_{6} \right)}\right) + p_{z}\\0 & 0 & 0 & 1\end{matrix}\right] =
\left[\begin{matrix}\cos{\left(\theta_{2} + \theta_{3} + \theta_{4} \right)} & - \sin{\left(\theta_{2} + \theta_{3} + \theta_{4} \right)} & 0 & a_{2} \cos{\left(\theta_{2} \right)} + a_{3} \cos{\left(\theta_{2} + \theta_{3} \right)}\\0 & 0 & 1 & d_{2}\\- \sin{\left(\theta_{2} + \theta_{3} + \theta_{4} \right)} & - \cos{\left(\theta_{2} + \theta_{3} + \theta_{4} \right)} & 0 & - a_{2} \sin{\left(\theta_{2} \right)} - a_{3} \sin{\left(\theta_{2} + \theta_{3} \right)}\\0 & 0 & 0 & 1\end{matrix}\right]
注意到上述矩阵两边元素(1, 4)和(3, 4),其中左边矩阵中所有元素均已知,为了方便,记左边矩阵(1, 4)和(3, 4)处元素分别为m, n
, 即
\begin{aligned}
m &= d_{5} \left(\left(r_{11} \cos{\left(\theta_{1} \right)} + r_{21} \sin{\left(\theta_{1} \right)}\right) \sin{\left(\theta_{6} \right)} + \left(r_{12} \cos{\left(\theta_{1} \right)} + r_{22} \sin{\left(\theta_{1} \right)}\right) \cos{\left(\theta_{6} \right)}\right) + p_{x} \cos{\left(\theta_{1} \right)} + p_{y} \sin{\left(\theta_{1} \right)} \\
n &= d_{5} \left(r_{31} \sin{\left(\theta_{6} \right)} + r_{32} \cos{\left(\theta_{6} \right)}\right) + p_{z}
\end{aligned}
令矩阵左右两边元素分别相等,有
\begin{aligned}
a_{2} \cos{\left(\theta_{2} \right)} + a_{3} \cos{\left(\theta_{2} + \theta_{3} \right)} &= m \\
-a_{2} \sin{\left(\theta_{2} \right)} - a_{3} \sin{\left(\theta_{2} + \theta_{3} \right)} &= n
\end{aligned}
将上述两式取平方和,即可消去\theta_2
,得
a_{2}^{2} + 2 a_{2} a_{3} \cos{\left(\theta_{3} \right)} + a_{3}^{2} = m^2 + n^2
这一步消去\theta_2
用到了下面这个式子
\sin(\theta_2) \sin(\theta_2 + \theta_3) + \cos(\theta_2) \cos(\theta_2 + \theta_3) = \cos(\theta_3)
由此,未知量只剩\theta_3
,可解出来
\theta_3 = \pm \arccos \left( \dfrac{m^2 + n^2 - a_2^2 - a_3^2}{2 a_2 a_3} \right)
求\theta_2
\begin{aligned}
a_{2} \cos{\left(\theta_{2} \right)} + a_{3} \cos{\left(\theta_{2} + \theta_{3} \right)} &= m \\
-a_{2} \sin{\left(\theta_{2} \right)} - a_{3} \sin{\left(\theta_{2} + \theta_{3} \right)} &= n
\end{aligned}
在上述方程中,已经求出了\theta_3
,故未知变量只有\theta_2
,将上面两式展开,得
\begin{aligned}
\left( a_{2} + a_{3} \cos{\left(\theta_{3} \right)} \right) \cos{\left(\theta_{2} \right)} &- a_{3} \sin{\left(\theta_{3} \right)} \sin{\left(\theta_{2} \right)} = m \\
-a_{3} \sin{\left(\theta_{3} \right)} \cos{\left(\theta_{2} \right)} &- \left( a_{2} + a_{3} \cos{\left(\theta_{3} \right)} \right) \sin{\left(\theta_{2} \right)} = n
\end{aligned}
为了方便,作如下代换
\begin{aligned}
a_{2} + a_{3} \cos{\left(\theta_{3} \right)} &= k_1 \\
-a_{3} \sin{\left(\theta_{3} \right)} &= k_2
\end{aligned}
则上述方程可写为
\begin{aligned}
k_1 \cos{\theta_2} + k_2 \sin{\theta_2} &= m \\
k_2 \cos{\theta_2} - k_1 \sin{\theta_2} &= n
\end{aligned}
看作关于\sin \theta_2 和 \cos \theta_2
的方程组,可以解出
\begin{aligned}
\sin \theta_2 &= \dfrac{mk_2 - nk_1}{k_1^2 + k_2^2} \\
\cos \theta_2 &= \dfrac{mk_1 + nk_2}{k_1^2 + k_2^2}
\end{aligned}
两式相除,即可解出\theta_2
\theta_2 = Atan2\left( {mk_2 - nk_1}, {mk_1 + nk_2} \right)
求\theta_4
注意(2)处矩阵两边的元素(1, 2)和(3, 2),其中左边矩阵元素均已知,为了方便,分别记左边矩阵(1, 2)和(3, 2)处元素为p, q
,即
\begin{aligned}
\left(r_{11} \cos{\theta_{1} } + r_{21} \sin{\theta_{1}}\right) \sin{\theta_{6} } + \left(r_{12} \cos{\theta_{1} } + r_{22} \sin{\theta_{1}}\right) \cos{\theta_{6}} &= p \\
r_{31} \sin{\theta_{6}} + r_{32} \cos{\theta_{6}} &= q
\end{aligned}
令矩阵左右两边元素对应相等,即有
\begin{aligned}
- \sin{\left(\theta_{2} + \theta_{3} + \theta_{4} \right)} &= p \\
- \cos{\left(\theta_{2} + \theta_{3} + \theta_{4} \right)} &= q
\end{aligned}
可解出\theta_4
\theta_4 = Atan2(-p, -q) - \theta_2 - \theta_3
总结
已知目标齐次矩阵^0_6T
\left[\begin{matrix}r_{11} & r_{12} & r_{13} & p_{x}\\r_{21} & r_{22} & r_{23} & p_{y}\\r_{31} & r_{32} & r_{33} & p_{z}\\0 & 0 & 0 & 1\end{matrix}\right] = ^0_6T
已知D-H参数表如下:
axis i |
\alpha_{i-1} |
a_{i-1} |
d_i |
\theta_i |
---|---|---|---|---|
1 | 0 | 0 | 0 | \theta_1 = 0 |
2 | -\frac{\pi}{2} |
0 | d_2=116.5 |
\theta_2 = -\frac{\pi}{2} |
3 | 0 | a_2=203.5 |
0 | \theta_3 = 0 |
4 | 0 | a_3=173 |
0 | \theta_4 = \frac{\pi}{2} |
5 | \frac{\pi}{2} |
0 | d_5 = 79.2 |
\theta_5 = 0 |
6 | -\frac{\pi}{2} |
0 | 0 | \theta_6 = 0 |
可解出其6个关节角为:
\begin{aligned}
\theta_1 &= Atan2(p_y, p_x) - Atan2(d_2, \pm \sqrt{p_x^2 + p_y^2 - d_2^2}) \\
\theta_5 &= \pm \arccos \left( - r_{13} \sin{\theta_{1}} + r_{23} \cos{\theta_{1}} \right) \\
\theta_6 &= Atan2 \left( \dfrac{-r_{12} \sin{\left(\theta_{1} \right)} + r_{22} \cos{\left(\theta_{1} \right)}}{-\sin(\theta_5)} , \dfrac{-r_{11} \sin{\left(\theta_{1} \right)} + r_{21} \cos{\left(\theta_{1} \right)}}{\sin(\theta_5)} \right) \\
\theta_3 &= \pm \arccos \left( \dfrac{m^2 + n^2 - a_2^2 - a_3^2}{2 a_2 a_3} \right) \\
\theta_2 &= Atan2\left( {mk_2 - nk_1}, {mk_1 + nk_2} \right) \\
\theta_4 &= Atan2(-p, -q) - \theta_2 - \theta_3
\end{aligned}
其中代换变量为:
\begin{aligned}
m &= d_{5} \left(\left(r_{11} \cos{\theta_{1}} + r_{21} \sin{\theta_{1}}\right) \sin{\theta_{6}} + \left(r_{12} \cos{\theta_{1}} + r_{22} \sin{\theta_{1}}\right) \cos{\theta_{6}}\right) + p_{x} \cos{\theta_{1}} + p_{y} \sin{\theta_{1}} \\
n &= d_{5} \left(r_{31} \sin{\left(\theta_{6} \right)} + r_{32} \cos{\left(\theta_{6} \right)}\right) + p_{z} \\
k_1 &= a_{2} + a_{3} \cos{\left(\theta_{3} \right)} \\
k_2 &= -a_{3} \sin{\left(\theta_{3} \right)} \\
p &= \left(r_{11} \cos{\theta_{1} } + r_{21} \sin{\theta_{1}}\right) \sin{\theta_{6} } + \left(r_{12} \cos{\theta_{1} } + r_{22} \sin{\theta_{1}}\right) \cos{\theta_{6}} \\
q &= r_{31} \sin{\theta_{6}} + r_{32} \cos{\theta_{6}}
\end{aligned}
由于\theta_1, \theta_5, \theta_3
中存在正负号,因此共有8组解
第7轴
假设有一个末端执行器被安装在机械臂末端,这将形成一个虚假的第7轴,这个轴一般无法造成旋转,只会在第6轴的轴线上形成一段连杆偏距d_7
。因此,可以得到末端执行器相对第6个坐标系的齐次变换矩阵_7^6T
_7^6T = \left[\begin{matrix}1 & 0 & 0 & 0\\0 & 1 & 0 & 0\\0 & 0 & 1 & d_{7}\\0 & 0 & 0 & 1\end{matrix}\right]
当安装了末端执行机构后,我们给定的是末端执行机构的空间位姿,也就是说给定的目标齐次变换矩阵是_7^0T
,我们需要将目标齐次变换矩阵转换成_6^0T
,来应用上述的逆运动学解,转换方式非常简单,右乘_7^6T^{-1}
即可
_6^0T = _7^0T \times _7^6T^{-1} = _7^0T \times \left[\begin{matrix}1 & 0 & 0 & 0\\0 & 1 & 0 & 0\\0 & 0 & 1 & - d_{7}\\0 & 0 & 0 & 1\end{matrix}\right]
我们现在假设末端执行机构被安装在第6个电机的法兰盘中心,即d_7 = 42
Comments | NOTHING